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Structure and size distribution of percolating clusters.
Comparison with gelling systems
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Abstract. 3d lattice Monte-Carlo simulations were done to obtain the mass distribution (N(m)) and pair
correlation function (g(r)) of percolating clusters. We give analytical expressions of the external cut-off
functions of N(m) at the z-average mass and of g(r) at the radius of gyration. The simulation results were
compared with experimental results on gel forming systems reported in the literature. The comparison
shows that the experimental results are compatible with the simulation results. However, more experiments
are needed before we can be confident that the percolation model is a good model for the sol-gel transition.

PACS. 82.70.Gg Gels and sols – 83.80.Jx Chemically reactive materials – 64.60.Ak Renormalization-group,
fractal, and percolation studies of phase transitions – 02.70.Lq Monte-Carlo and statistical methods

1 Introduction

Two decades ago it was suggested [1] that the gelation
process close to the gel point can be described by the
percolation model. There exists no analytical theory for
percolation in 3 dimensions, but it can be simulated nu-
merically. Percolating clusters have the following charac-
teristics [2]:

N(m) ∝ m−τf(m/mz) m� 1 and mz � 1
m ∝ R

df
g m� 1

g(r) ∝ rdf−3h(r/Rg) r � r0 and Rg � r0
mz ∝ ε−1/σ ε→ 0

(1)

Here N(m) is the number of clusters per unit volume with
aggregation number m and radius of gyration Rg and g(r)
is the pair correlation function. f(x) and h(x) are cut-off
functions at the z-average aggregation number, mz, and
the radius of gyration (Rg), which are unity for x � 1
and decrease faster than any power law for x � 1. df is
the so-called fractal dimension and r0 is the size of the
elementary unit of the clusters. ε is a parameter which
characterizes the distance to the gel point: ε = |p−pc|/pc,
where p is the extent of connectivity and pc is the value at
the gel point. Other properties of percolating clusters are
easily derived from equation (1), e.g. the divergence of the
weight average aggregation number (mw) or the relation
between mw and the z-average radius of gyration (Rgz):
mw ∝ ε−(3−τ)/σ, mw ∝ R

df (3−τ)
gz . Computer simulations

a e-mail: Jean-Christophe.Gimel@univ-lemans.fr
b e-mail: Dominique.Durand@univ-lemans.fr
c UMR6515 CNRS

have been used to obtain the values of the exponents: τ =
2.19, df = 2.53 and σ = 0.45 [3].

The static properties of percolating clusters form the
basis of attempts to explain the effects of gel formation on
the mechanical properties, such as the dependence of the
viscosity and the gel modulus on ε and the low frequency
dependence of the shear modulus close to the gel point [4].
Of course, assumptions in addition to percolation have to
be made to explain dynamic properties. In order to test
the validity of these additional assumptions we have to
make sure that the static properties of real clusters close
to the gel point are indeed those of percolating clusters
obtained from computer simulations.

Experimental studies have been done in order to see
if the characteristics of the clusters close to the gel point
correspond to those of percolating clusters. These exper-
iments were almost exclusively aimed at obtaining val-
ues of the exponents. The exponent τ can in principle be
determined using size exclusion chromatography (SEC)
in combination with light scattering detection. Of course,
the correct value of τ is only obtained in the size range
r0 � Rg � R∗ whereR∗ is either Rgz or the upper limit of
the resolution of the SEC columns used. The upper limit of
resolution of the commercially available columns is about
70 nm while r0 is generally at least a few nanometers.
A number of gel forming systems have been investigated
with SEC and give τ ≈ 2.2 [5–8].

The structure of percolating clusters can be stud-
ied using scattering methods. The scattering wave vec-
tor (q) dependent structure factor S(q) is the Fourier
transform of g(r) [9]. Direct experimental determination
of df is extremely difficult. Real clusters are flexible
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and their fractal dimension decreases upon dilution. In ad-
dition, the measured fractal dimension (d∗f ) of the whole
system is modified by the effect of polydispersity: d∗f =
df (3− τ) [10]. Direct determination of df is only possible
by measuring the scattering intensity of a monodisperse
labelled fraction of the clusters in the bulk [11]. This ex-
periment has not been attempted. Adam et al. [12] have
measured the structure factor of one polydisperse bulk
system using neutron scattering. They found d∗f = 2.0
and using an independent measure of τ = 2.2 obtained
df = 2.5. All other measurements, see e.g. [10,13,14], have
been done on clusters swollen in a good solvent. The frac-
tal dimension of swollen clusters, dfs, is not directly re-
lated to df , but can be related to the spectral dimension
which takes into account the connectivity of the clusters
[15] which leads to dfs = 2.

Experimental determination of σ requires the measure-
ment of mz as a function of p close to pc. In practice
one assumes that p is proportional to measurable param-
eters such as the reaction extent or the amount of added
cross-linking agent at complete reaction. Most often mw

is determined using scattering techniques, so one needs an
independent measure of τ to determine σ. The limitation
of such measurements is the accuracy with which pc and p
can be determined. Experimental results on a number of
systems are in agreement with simulation results of per-
colating clusters even though in most cases rather large
values of ε where used [6,16–19].

In all experiments it was assumed that the influence
of internal and external cut-off functions of the power law
behaviour was negligible for the range of data used to ob-
tain the exponents. Since the cut-off functions are very
smooth the extent of their influence cannot be detected in
the data that contain noise, but has to be assumed negli-
gible. However, in [20] we have shown that the influence of
internal and external cut-off functions can be quite strong.

It is important to know the form of the cut-off func-
tions in order to estimate whether they can be neglected.
In computer simulations internal cut-off functions and
thus the prefactors in equation (1) depend on the way per-
colation is modelled. For real systems they depend on the
structure of the precursors. Unfortunately, care has not
always been taken to ensure that experimental values of
m or q−1 are sufficiently large compared to the elementary
unit. In addition, if percolation is a good model for gela-
tion then the external cut-off functions should be system
independent [2] and the same as in computer simulations.
Knowledge of these cut-off functions not only allows one
to estimate their influence on the data, but could also be
used directly in the analysis. Stauffer [21] showed a rough
estimate of f(m/mz) obtained from Monte-Carlo simula-
tions, but did not give an analytical expression. As far as
we are aware the structure factor of individual percolating
clusters has not been calculated and g(r/Rg) is unknown.

Here we present Monte-Carlo simulations of site perco-
lation on cubic lattices. We focus on the results extrapo-
lated to infinite lattice size. A detailed discussion of finite
size effects will be given elsewhere. Finite size effects are
important in computer simulations, but not relevant for
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Fig. 1. m2N(m) at different values of ε as indicated in the
figure obtained by extrapolation to L → ∞. The dashed line
represents the power law asymptotic behaviour at ε = 0.

comparison with real systems. We will compareN(m) and
S(q) obtained from computer simulations with literature
results for real systems.

2 Results

2.1 Mass distribution

We have used two methods to simulate percolating clus-
ters. In the first one sites on cubic lattices with size L3

were occupied with probability φ. Neighbouring sites were
taken as connected. The number of clusters with m sites
(N(m)) was determined at different values of L and φ.
The results were averaged over a large number of trials in
order to reduce the standard error to less than 1%. We de-
fine that the system percolates if at least one cluster spans
the lattice in at least one direction. The critical density,
φc, for percolation for L → ∞ was found to be 0.3116 in
good agreement with literature results. ε is calculated as
ε = |φc − φ|/φc. Extrapolations to L → ∞ at different
values of ε were done by plotting the data as a function
of 1/L. For small m, N(m) increases linearly with 1/L up
to the smallest L used. The linear range decreases with
increasing m and the largest value of m for which N(m)
can be determined accurately depends on L. Using lattices
with L up to 1023, the smallest ε for which N(m) can be
determined accurately over the whole range of m is about
6× 10−3.

In the second so-called Leath method [22] sites adja-
cent to a seed site are occupied with probability φ. In sub-
sequent steps non-tested sites adjacent to filled sites are
occupied with probability φ. With this method finite size
effects can be avoided by choosing the seed in the center of
the box and keeping the maximum cluster size below that
of the lattice. This method has about the same limitations
as the previous method and gives the same results.

Figure 1 shows N(m) extrapolated to L→∞ at differ-
ent values of ε below the percolation threshold. We have
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Fig. 2. mτN(m) at different values of ε as indicated in Figure
1 obtained by extrapolation to L→∞ with τ = 2.19.
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Fig. 3. Same data as in Figure 2 plotted as a function (m/mz)
σ

with σ = 0.45. The filled circle represents the power law asymp-
totic behaviour at ε = 0.

plotted m2N(m) to facilitate comparison with SEC re-
sults, see Section 3.1. On the other hand, the effect of in-
ternal and external cut-off functions is best visualized by
plotting mτN(m) which is constant if the effect is absent.
If the correct value of τ is used the amplitude of mτN(m)
should be independent of ε for ε � 1. This is the case
for τ = 2.19, see Figure 2, which agrees with the litera-
ture value. Note that there is no range of m over which
the effect of both the internal and external cut-off can be
neglected even at the smallest ε used in the simulations.
In Figure 3 we have plotted mτN(m) as a function of
(m/mz)σ. In this representation the data should collapse
on a single curve which represents f(m/mz). Deviations
at small values of m/mz are due to the internal cut-off and
are more important for larger ε ·mz scales with ε over the
whole range tested: mz = 1.70ε−2.21, see Figure 4. This
means that σ = 0.45, in agreement with values given in
the literature.

Stauffer [21] suggested that f(m/mz) can be described
by a Gaussian function in terms of (m/mz)σ. Figure 5
shows that a Gaussian gives indeed a very good descrip-
tion of f(m/mz) at least for φ < φc. In Figure 5 we used
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Fig. 4. Dependence of mz on ε. The solid line represents the
result of a linear least squares fit to the data: mz = 1.65 ×
10−2.21
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Fig. 5. External cut-off function of the mass distribution of
percolating clusters obtained from 3d Monte-Carlo simulations.
The solid line represents the result of a non-linear least squares
fit given by equation (2).

σ = 0.45 and have retained the data shown in Figure 3
that are not influenced by the internal cut-off. A non-
linear least squares fit gives:

mτN(m) = 0.108 exp

[
−
(

(m/mz)σ − 0.521
0.763

)2
]
· (2)

Note that we have obtained the cut-off function by ex-
trapolating to L→∞ contrary to Stauffer [21] who used
f(x) = N(m, ε)/N(m, ε = 0) for a given lattice size. This
procedure assumes that finite size effect can be simply di-
vided out. Elsewhere we will show that this assumption is
not justified and leads to erroneous results. We will also
show there that the Gaussian form is only a rough approx-
imation for the cut-off function for φ > φc.

2.2 Structure

Percolating clusters with a given mass have a range of
structures. Each structure can be characterized by a radius
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Fig. 6. (a) Histogram of Rc
g on a logarithmic scale for simu-

lated percolating clusters with different aggregation numbers
indicated in the figure. (b) Same data as a function of Rc

g/Rg.

of gyration, Rc
g. The superscript c is used to distinguish

this radius of gyration from the average radius of gyration
for a given mass. The distribution of structures for a given
value of m can thus be characterized by the distribution of
Rc

g. In Figure 6a we have plotted the distribution of Rc
g at

different m. Figure 6b shows that the relative width of this
distribution is independent of m. For flexible clusters the
radius of gyration will vary in time and the time averaged
value will be very close to the structure averaged value
Rg. We show in Figure 7 the evolution of Rg with m for
Rg much smaller than L so that finite size effects can be
neglected. A linear least squares fit for m > 104 gives
m = 2.4R2.53

g which is in agreement with the values of df
reported in the literature.

The average pair correlation function (g(r)) of per-
colating clusters with different m is shown in Figure 8.
For clusters with m ≤ 104, g(r) has been calculated by
computing the m(m − 1)/2 pair distances in the cluster.
For bigger clusters, we have sampled at least 108 pairs
in the cluster. The average has been taken over at least
100 clusters of mass m. g(r) has been normalized so that
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Fig. 7. Evolution of the aggregation number with the radius
of gyration of simulated percolating clusters.
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Fig. 8. Average pair correlation function of simulated perco-
lating clusters with different aggregation numbers indicated in
the figure.

∫
4πr2g(r)dr = m. For large m we observe a power law

dependence of g(r) in agreement with equation (1). The
scatter in the data at small r reflects the discrete nature
of the lattice. The shape of the external cut-off is indepen-
dent of m and is well described by a stretched exponential,
see Figures 9a and 9b:

r3−df g(r) = 0.29 exp

[
−
(

r

1.1Rg

)1.7
]
. (3)

In the fit we have used the relation between m and Rg to
reduced the number of free parameters from 3 to 1 see [9]
for details.

3 Discussion

3.1 Mass distribution

In SEC the cluster weight concentration (C ∝ mN(m)) is
measured as a function of the elution volume (Ve). SEC
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Fig. 9. (a) r3−df g(r) as a function of (r/Rg) with df = 2.53 for
percolating clusters obtained from 3d Monte-Carlo simulations.
Same symbols as in Figure 8. The solid line represents the fit
given by equation (3).(b) Double logarithmic representation of
the same data.

columns exist for which Ve ∝ logm over a broad range
of m. In this case experimental chromatograms of systems
close to the gel point can be directly compared to Figure 1
as long as the largest clusters are not totally excluded. If
the SEC columns are not linear, a calibration curve should
be employed or the molar mass should be determined us-
ing on-line light scattering detection.

As in the computer simulations, chromatograms of real
systems show the influence of internal and external cut-
offs of the power law dependence. In the simulations the
effect of the internal cut-off becomes negligible only for
m > 200. However, as mentioned above the internal cut-
off depends on the type of simulation and is system depen-
dent for real systems. On the other hand, for percolating
clusters, the external cut-off is system independent and
given by equation (2).

Experimentally, τ is determined by measuring the
slope of logC versus logm. The external cut-off modifies
this slope close to m/mz. Of course, the influence of the
external cut-off can be avoided by taking systems with
very large mz. However, in this case the cut-off in the

chromatogram at large m depends on the resolution of
the column used. Total exclusion leads to a peak in the
chromatogram at a high molar mass. It is unknown up to
what value of m the effect of the column resolution can
be neglected. A direct comparison of experimental chro-
matograms with equation (2) represents a more stringent
test of the applicability of the percolation to the gela-
tion of real systems. In SEC combined with on-line light
scattering detection one obtains m3N(m) as a function of
logm. In this representation the SEC signal has a max-
imum at mmax. It is straightforward to calculate that if
the external cut-off function is given by equation (2) then
mmax = 0.79mz, independent of the internal cut-off func-
tion.

A number of gel forming systems have been investi-
gated using SEC [5–8]. In all cases values of τ close to 2.2
have been reported. In two cases an attempt was made to
determine f(m/mz) [5,8]. In [6] a simple exponential cut-
off was assumed. Unfortunately, these SEC results are not
sufficiently precise to distinguish between an exponential
and a Gaussian cut-off function.

Dynamic light scattering (DLS) is an alternative way
to measure the molar mass distribution of the clusters. In
DLS the intensity auto correlation function (g2) is mea-
sured which can be related to the electric field autocor-
relation function (g1) [23]. For solutions g1 is given by
the inverse Laplace transform of the relaxation time dis-
tribution of concentration fluctuations (A(τr)): g1(t) =∫∞

0
A(τr) exp (−t/τr) dτr. In the case of very dilute solu-

tions and at qRgz < 1 concentration fluctuations occur via
translational diffusion. In this case τr is related to the dif-
fusion coefficient: τr = 1/(q2D). The diffusion coefficient
is inversely proportional to the hydrodynamic radius (Rh).
For highly diluted large percolating clusters it is reason-
able to assume no draining so that m ∝ R

df
h . The relax-

ation time is thus related to the mass: τr = am1/df with
a a constant. This means that for m� 1 and qRgz < 1:

g1(t) ∝
∫ ∞

1

m3N(m) exp
(
− t

am1/df

)
d logm. (4)

The upper limit of m that can be determined by DLS is
given by the condition qRgz < 1. In practice the limiting
size is about 300 nm, i.e. much higher than in SEC. Unfor-
tunately, a direct inverse Laplace transformation of g1 is
very sensitive to noise, which means that N(m) cannot be
obtained from g1 without some ambiguity. Nevertheless,
DLS offers an opportunity to test whether a particular
form of N(m) agrees with the data. In Figure 10 we show
correlograms obtained from dilute solutions of cross-linked
PMMA at different reaction extents close to the gel point.
Care was taken to ensure that qRgz < 1. The time axis is
normalized by the average relaxation rate, 〈Γ 〉 =

〈
τ−1
r

〉
,

which leads to superposition over the whole time range
demonstrating that the mass distribution and the struc-
ture does not vary with the reaction extent. The correl-
ograms are compared to equation (4) using the fractal
dimension of swollen clusters, dfs = 2, and either equa-
tion (2) or a simple exponential for the cut-off function.
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Fig. 10. Electric field autocorrelation functions of diluted solu-
tions of cross-linked PMMA at different reaction extents close
to the gel point. Care was taken to ensure that qRgz < 1. The
time axis is normalized by the average relaxation rate. The
solid line represents the result of a non-linear least squares
fit to equation (4) with df = 2 and N(m) given by equa-
tion (1) using τ = 2.19 and f(m/mz) given by equation (2).
The dashed line represents a fit with a exponential cut-off func-
tion for f(m/mz).

g1 is very sensitive to trace amounts of spurious scatter-
ers which give rise to a small baseline. Nevertheless, it is
clear that equation (2) gives a better description of the
data than a simple exponential cut-off. The effect of dif-
ferent cut-off functions becomes negligible for t. 〈Γ 〉 < 0.5.
For more details of the properties of this system see [24].

3.2 Structure

As mentioned in the introduction, as far as we are aware,
only one experimental structure factor has been reported
of an undiluted polydisperse system (polyurethane) close
to the gel point [12]. The structure factor was measured for
a mixture of hydrogenated and deuterated polyurethane
using SANS. Under the assumption of no specific interac-
tion between hydrogenated and deuterated polyurethane,
the labelling technique ensures that interparticle interac-
tions do not contribute to the structure factor [25]. We
have calculated S(q) of percolating clusters by taking the
Fourier transform of g(r). The z-average structure factor
of the polydisperse system was calculated as:

Sz(q) =

∫∞
1
m2N(m)S(q) dm∫∞

1 m2N(m) dm
(5)

using the Gaussian cut-off function of N(m) given in equa-
tion (2).

Figure 11 shows the experimental results together
with Sz(q) using for h(r/Rg) a simple exponential or the
stretched exponential given in equation (3). It is clear
that the stretched exponential gives a better description
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Fig. 11. (a)Comparison of the experimental structure factor of
polydisperse branched polyurethane close to the gel point and
the z-average structure factor of simulated percolating clusters
using for h(r/Rg) a stretched exponential cut-off (solid line)
and a simple exponential cut-off (dashed line). The straight
line has a slope of 2. (b) Different representation of the same
data.

of the data. Unfortunately, at larger q-values the condi-
tion qr0 � 1 is no longer valid and the internal cut-off
cannot be neglected. It is difficult to estimate precisely
the size below which the polyurethane clusters no longer
have the self similar structure of the branched clusters.
It is, of course, bigger that the size of the prepolymers
used to make the clusters which is a few nanometers. The
crossover to the local structure cannot be seen in the ex-
periment because the fractal dimension of the first few
oligomers which are essentially linear is 2, i.e. very close to
that of polydisperse percolating clusters (d∗f = df (3− τ)).
The q-range over which both the internal and the external
cut-off functions can be neglected is very small indeed. It
is clearly not justified to deduce the fractal dimension of
the clusters from the data without knowledge of the ef-
fect of the cut-off functions. The present analysis gives
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more confidence that the large scale structure of the
polyurethane clusters is indeed the same as that of the
percolating clusters obtained from computer simulations.

A lot of experimental work is done on diluted sys-
tems. We are currently attempting to simulate the effect
of swelling in order to obtain the structure factor of per-
colating clusters swollen in good solvents.

4 summary

We have simulated the structure and mass distribution
of percolating clusters including the external cut-off func-
tions. We have compared the simulation results with ex-
perimental results on gelling systems. The mass distri-
bution of a number of systems is in agreement with
simulation results, although only for one system can the
simulated and experimental external cut-off function be
compared quantitatively. Only one experimental structure
factor of an undiluted gel forming system has been re-
ported. This experimental result is compatible with sim-
ulation results, but the average cluster size was small so
that the effect of the internal cut-off function is important
in the experiment. It is clear that more measurements are
needed on large clusters of various gelling systems, be-
fore one can conclude with confidence that the percolation
model describes the sol-gel transition for real systems.
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